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ABSTRACT 

This study explores the integration of Artificial Intelligence (AI) and semantic modeling to enhance 

the operational efficiency of smart building management systems (BMS). We present an AI-driven 

knowledge base utilizing a multi-agent architecture and large language model (LLM) to optimize 

building services, streamline management tasks, and implement energy-saving strategies. The 

multi-agent framework enables autonomous task management and allows natural language 

interactions via a chatbot interface for data access and analysis. The system further automates the 

creation and deployment of machine learning models, improving system scalability by rapidly 

replicating models across multiple buildings. Key outcomes include enhanced scalability and 

optimized energy consumption, demonstrating the system’s ability to increase the efficiency. A 

case study illustrates the system's practical application, showcasing substantially reduction in 

implementation time with only a slight decrease in accuracy, leading to considerable improvements 

in energy management and operational efficiency within smart buildings. 
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INTRODUCTION 

In modern smart buildings, BMS plays an important role by acting as a centralized platform that 

collects data from various mechanical and electrical systems. This system facilitates energy 

efficiency, demand analysis, and predictive fault detection and diagnosis, thereby enhancing the 

overall operational performance and maintenance (O&M) processes. Gunay et al. (2020) conducted 

a comprehensive literature review on data analytics for building performance optimization, 

underscoring the critical role of data-driven approaches, however, the study also identified the 

shortcomings in data access and processing due to the lack of standardization, which remains a 

significant barrier to the efficient use of data. While other research focuses on the energy-saving 

aspects of BMS, such as reinforcement learning (Wang & Hong, 2020) and hybrid HVAC models 

(Zhang et al., 2024), these methods, though effective, still face limitations in scalability across 

diverse environments. 
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The Electrical and Mechanical Services Department (EMSD) of the Hong Kong Special 

Administrative Region (HKSAR) of the People’s Republic of China manages over 8,000 buildings 

and thousands of chiller plants. In managing such a vast infrastructure, EMSD continually seeks 

innovative solutions to enhance efficiency and simplify building management. However, 

challenges remain in processing large volumes of data efficiently and scaling energy-saving 

solutions across diverse building environments.  

 

The emergence of Generative AI, particularly LLM, offers innovative solutions to the 

aforementioned challenges. LLM, trained on large-scale text datasets, have the capacity to store 

large amounts of knowledge. Beyond open-domain knowledge, their most critical strength lies in 

their inference capabilities. Zhang et al. (2024) explored the potential of LLM in handling time-

series data and found them to be a promising way for enhancing data processing capabilities. Xue 

and Salim (2024) introduced a novel application of LLM for energy load forecasting and intelligent 

decision-making within energy systems, demonstrating their possible in enhancing BMS 

capabilities. Additionally, Xiao and Xu (2024) developed a multi-agent framework utilizing LLM 

to automate critical tasks such as building information processing, performance diagnostics, and 

retrofit recommendations. This approach effectively reduces repetitive workloads for engineers, 

enabling them to focus on higher-level analysis. While these advancements offer promising 

directions for future research, there remains a scarcity of studies exploring the integration of 

semantic models with LLM, signaling a critical gap that merits further research. 

 

Building on this need for further exploration, this paper introduces an AI-based Knowledge Library 

(AI-KL) that integrates both LLM and semantic models to enhance building management through 

natural language processing (NLP). Additionally, this approach creates a functional library to 

handle tasks like querying data using natural language, assisting with data analysis, and generating 

machine learning models. It uses pre-trained machine learning models within the AI-KL to develop 

smarter and more adaptable BMS demand analysis predictions. Furthermore, the findings of this 

study could be further tested on practical implications for the design and management of energy-

efficient buildings, ultimately supporting broader sustainability goals. 

 

METHODOLOGY 

 

System Architecture 

The system architecture illustrated in the Figure 1 consists of several interconnected layers 

designed to automate and enhance building management processes through a combination of multi-

agent systems and semantic model. 

 
Figure 1. Overview of System Architecture 



The system begins with User Prompt Input, where users submit queries or commands that are 

processed by the Multi-Agent Layer. This layer, composed of several agents, each responsible for 

specific tasks, interprets the input and identifies the appropriate tools required. Once the prompt is 

analyzed, the agents select tools from the Functional Library, which includes options such as the 

Data Fetch Tool, Graph Tool, and Machine Learning Model Tool. These tools are crucial for 

executing tasks efficiently. Data retrieval and processing are facilitated by the integration of the 

Semantic Model Layer and the Database Interaction Layer. The Semantic Model Layer utilizes the 

Brick Schema, a standardized ontology that organizes building metadata and assigns brick tags, 

ensuring accurate data labeling and retrieval. The next step is to pass the semantic query through 

an API to the Database interaction Layer, which stores time-series data. This process enables the 

system to analyze the query, generate insights, and deliver the final result to the user, which may 

include data analysis, visualized graphs, or predictions such as cooling load forecasts. The end-to-

end architecture efficiently automates building management processes through a combination of 

multi-agent systems, semantic models, and machine learning tools, enhancing adaptability, 

efficiency, and decision-making. 

 

Semantic Model 

Recent studies highlight that the heterogeneity in metadata presents a significant challenge for 

developing generalized solutions in BMS (Xu and Xiao 2023). To address this, semantic models 

like the Brick Schema offer a structured ontology for organizing and standardizing building 

metadata, minimizing the need for detailed building and system-specific data. Brick is an open-

source framework that standardizes semantic descriptions of physical, logical, and virtual assets in 

buildings, as well as the relationships between them (Brick Ontology). By providing a common 

solution, Brick reduces the expenses of deploying analytics, energy efficiency measures, and smart 

controls across building systems such as HVAC, lighting, fire safety, and security. Its cross-vendor 

representation enhances interoperability, simplifies smart analytics and control applications, and 

tackles the common issue of non-standard, unstructured data in building management. 

 

Using the Resource Description Framework (RDF) to represent data in a machine-readable format 

and employing SPARQL for querying, the Brick Schema ensures that metadata is expressive and 

supports automation and application development (Balaji et al. 2018). These semantic models 

leverage World Wide Web Consortium (W3C)-governed standards, including RDF and the Web 

Ontology Language (OWL), to organize data through meaningful relationships, enabling 

applications like the Semantic Web and knowledge graphs to help machines better understand and 

process information (W3C, 2024). Building on these advancements, we will integrate the semantic 

model developed in EMSD with LLM to demonstrate the effectiveness of this combination in 

automating complex tasks. 

 

LLM Finetuned with Semantic Model  

In this research, we are using an open-source pre-trained LLM from Hugging Face, a widely 

recognized platform for state-of-the-art machine learning models. However, LLM has its own set 

of limitations. A prominent challenge is the model's tendency to generate fictional or nonsensical 

responses, particularly when tasked with queries in specialized or technical domains. This issue, 

commonly known as "LLM hallucination," raises concerns about the reliability and accuracy of 



these models in professional and domain-specific applications. Furthermore, in these specific 

domains, the model often fails to provide the information users seek, which can hinder its overall 

effectiveness, particularly in scenarios that demand agent coordination for task completion.  

 

To address this issue, several approaches have been proposed. For instance, Kiritani and Kayano 

(2024) implemented local diffusion mechanisms to reduce structural hallucinations. Fairburn and 

Ainsworth (2024) integrated LLM with graph neural networks, enabling LLM to generate relational 

data alongside textual information. These methods have shown efficiency in improving LLM 

performance, particularly in reducing hallucinations. 

 

In this paper, we adopted the Parameter Efficient Fine-Tuning (PEFT) method, using a question-

and-answer dataset containing semantic metadata to enhance the domain-specific knowledge of the 

LLM. Our goal is to enhance the model's ability to understand the relationships between specific 

building assets managed by EMSD. This will enable the LLM to extract relevant keywords from a 

wide range of user queries, facilitating more flexible and efficient semantic searches within the 

database. For example, the building name BLD1 is used as a prefix to identify all components 

belonging to that specific building. Entities such as the chilled water system 

(brick:Chilled_Water_System) are classified by labels and linked to their locations 

(brick:hasLocation) and parts (brick:hasPart). These hierarchical and relational annotations provide 

rich context and structured information, enabling the model to better understand the relationships 

and dependencies between different entities, thus can reduce LLM hallucinations. Moreover, the 

use of semantic metadata eliminates the need for massive re-training works when the model is 

applied to different buildings, thereby enhancing its generalizability. Figure 2a and Figure 2b shows 

the responses from the LLM before and after fine-tuning using the same question input, effectively 

demonstrating the impact of fine-tuning. 

  

Figure 2a. LLM Responses before  

Fine-Tuning 

Figure 2b. Fine-Tuned LLM Responses 

within a Multi-Agent Framework 

 

LLM based Multi-Agent 

The core module of our system is the multi-agent framework. A multi-agent approach can enhance 

LLM’s ability to leverage specialized capabilities and improve communication between agents, 

thereby more effectively simulating complex real-world scenarios (Zhang et al. 2024). In this paper, 

we utilize the CrewAI framework, which offers enhanced flexibility in setup, more straightforward 

and intuitive component definitions, and a simpler starting point for application development. 

 

Within this framework, each agent employs a fine-tuned LLM to decode user inputs and facilitate 

communication among agents. Each agent is tasked with specific roles and can access tools from 



the Function Library, enhancing their ability to perform various user-requested tasks, one process 

of the plot graph task is illustrated in Figure 3 below. 

  

Figure 3. Multi-Agent Processing and Execution of the Plot Graph Task 

 

Our system employs a hierarchical processing approach, utilizing a total of four agents. The first 

agent, known as the Input Process Agent, is responsible for decoding the user's input and extracting 

key words from the user's queries. Beneath this agent, three agents are assigned to manage 

specialized tasks, enhancing overall system efficiency. Once the keywords are extracted, the Data 

Retrieval Agent is activated. This agent utilizes the keywords provided by the Input Processor to 

retrieve relevant data from the database and deliver the corresponding response to the user. The 

Graph Plotting Agent processes the collected data to generate easy-to-understand graphs. These 

visualizations provide users with a concise overview of key operational metrics, such as chiller 

efficiency, equipment status, and total power consumption. The final agent, Machine Learning 

Agent, utilizes a pre-trained machine learning model to predict cooling load demand based on the 

building's data. This model, originally developed using the XGBoost algorithm in a previous study, 

accurately predicted the cooling load of a Clinic and Laboratory building managed by EMSD. 

Currently stored in our functional library, this model will be applied in a case study to forecast the 

cooling load of an office building with different profiles, allowing us to evaluate its effectiveness 

in transfer learning. With these predictions, engineers can formulate an optimal operational plan to 

reduce power consumption. 

 

CASE STUDY  

 

Project Overview and Outcomes 

Office buildings are typically energy-intensive environments due to the demanding requirements 

for ventilation, temperature control, and occupant comfort, making the enhancement of energy 

efficiency in these buildings a primary objective for EMSD. In this study, one office building was 

selected as the case study to evaluate the effectiveness of the entire system. This facility is equipped 

with a range of building services equipment and a total of 1,565 monitoring sensors, including 

those for voltage, current, flow rate, and more. To ensure system effectiveness, an integrated BMS 

is employed to locally control and monitor these data, which are subsequently transmitted to 

EMSD’s Regional Digital Control Center (RDCC). At the RDCC, the data is stored in a 

semantically standardized data structure within the RDCC's database, ensuring consistency and 

accessibility for further analysis. 



 

In this research, the system implemented in our case study integrates data acquisition, analysis, and 

predictive algorithms to optimize energy usage across the facility's chiller units. With the AI-KL 

system, users can easily access equipment performance, receive data-driven insights into 

maintenance trends through annual reviews. Figure 4 illustrates the system's response to user 

queries. 

      
Figure 4. AI-KL System Response 

 

Beyond analyzing current equipment performance, engineers can utilize the AI-KL system to 

quickly predict future cooling load demand and adjust the chiller sequence, thereby reducing 

energy consumption.  The comparison between the system-generated cooling load prediction 

model and those from the human-built model is presented in Figure 5a and Figure 5b.     

  

Figure 5a. Cooling Load Prediction from 

 AI-KL 

Figure 5b. Cooling Load Prediction from 

Human-built Model 

 

Discussion 

We evaluated the final results in terms of accuracy and implementation time, as shown in Table 1. 

The results indicate that employing the AI-knowledge-based system lowered the challenges faced 

by building engineers in handling complex data processing. This improvement facilitated efficient 

data analysis and machine learning, enhancing the prediction of cooling loads and supporting the 

development of more effective energy-saving strategies. 

 
Table 1. Evaluation of the Machine Learning Model generated by AI-KL vs Human 

Metric AI-KL-Generated ML 
(XGBoost) 

Human-Generated ML 
(XGBoost) 

Mean Absolute Error (MAE) 0.75 0.66 

Root Mean Squared Error (RMSE) 0.67 0.59 

R-squared (R²) 0.82 0.89 

Implementation Time days months 

 

In the traditional BMS, even with user-friendly interface, querying data across multiple buildings 

with various equipment required handling vast datasets, wasting a lot of time for users. Now, with 

the AI-KL, users can effortlessly retrieve the data they need with a one-shot prompt and even 



request the agents to assist with further analysis. This approach not only simplifies data retrieval 

but also reduces the cognitive load on users, enabling them to focus on higher-level tasks like 

decision-making and problem-solving, while the AI handles complex data queries and analysis in 

real-time.  

 

This framework's self-learning capability, coupled with its efficiency in replicating energy 

optimization strategies, underscores the superiority of the AI-KL in building management. BMS 

typically encompasses a diverse array of equipment, and traditionally, controlling these different 

systems necessitates the expertise of engineers across various disciplines. However, by 

consolidating the knowledge of all relevant agents within a single system, more accurate and 

domain-specific analyses can be performed, enabling the formulation of effective energy 

optimization strategies. This integration significantly enhances the overall effectiveness of BMS. 

 

LIMITATIONS AND FUTURE WORK 

However, our findings also reveal some limitations. One significant drawback is that the system 

lacks a managerial role; task allocation still requires human intervention, limiting the level of 

automation. Additionally, the accuracy of the system's machine learning models falls short of state-

of-the-art benchmarks. This is likely due to inadequate data preprocessing and feature engineering, 

as the system currently lacks a dedicated data processing agent. Instead, it inputs raw data directly 

into pre-trained machine learning models, which may not be optimized for the specific 

characteristics of our dataset. Furthermore, the varying time intervals and inconsistent data volumes 

from different buildings pose challenges for model training and evaluation. 

 

In conclusion, while the AI-KL offers significant advantages in terms of scalability and efficiency, 

there are areas that require further development to enhance its overall effectiveness. To improve 

the accuracy of machine learning, we propose introducing a comprehensive data processing agent 

that facilitates advanced feature engineering, handles missing data, and considers the temporal 

characteristics of building-specific datasets before passing them to the machine learning agent. This 

should be complemented by model selection and hyperparameter tuning to optimize performance. 

Additionally, we recommend developing specialized domain agents that integrate domain-specific 

knowledge to autonomously handle complex tasks within buildings. A manager agent will also 

need to be introduced. This agent shall interpret user instructions, accurately assign tasks to the 

appropriate sub-agents, and confirm task assignments with the user when necessary. Additionally, 

it should ask the user for missing information when input data is incomplete. These improvements 

will be a key focus of our future research. 

 

CONCLUSION AND IMPLICATIONS 

The impact of this work spans various aspects of building management, highlighting both practical 

applications and advancements in research. The integration of AI-driven technologies, particularly 

the combination of LLM and semantic modeling, demonstrates significant potential to enhance 

natural language understanding and decision-making capabilities in real-time environments. This 

paves the way for innovation in the field of smart building technologies. Additionally, the proposed 

system also offers a scalable framework to improve the efficiency and sustainability of building 

operations. The ability to autonomously manage and optimize subsystems such as HVAC can not 



only reduce operational costs but also ensure long-term resource efficiency. The predictive 

capability to automatically coordinate tasks and systems (such as cooling demand forecasting) 

minimizes the need for manual intervention and enables data-driven decision-making, delivering 

tangible benefits. These improvements contribute to smoother and more efficient management of 

building resources. The overall impact of this research lies in its potential to integrate advanced AI 

technologies with BMS, shaping the future of intelligent building management. 
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